BRAKES - 101

John Salamankas

- Turned onto taxiway and found both RH brakes on fire
- While parked in front of the hangar, tires started going flat as fuse plugs melted
- Blew left main tires. Tires caught fire and had to be extinguished by the fire department
- After turning off the runway the #1 & #2 tires caught fire
- #4 tire blew, other tires all flat spotted

- Taxied in to FBO ramp with flash fire in left wheel well
- 5 minutes later the left MLG brakes were found on fire
- Came to a complete stop at end of landing roll and all four brakes seized

Topic Outline

- Need for this presentation
- Pattern of events and how discovered
- Brake basics
- Carbon
- Brake performance
- Anti-skid
- Certification Requirements

Topic Outline

- Brake testing
- Lessons learned in test
- Expert review of fleet events
- Recommendations

- Gulfstream actively monitors the in-service fleet
- Daily AOG meeting in Tech Ops
 - Required attendance by SAV departments
 - Conference call with FSR's and select off-site locations
 - Review and update of Fleet Status Report
 - Review of Tech Ops Conversation Log
 - Review of Field Service Reports
- Safety Review Team
 - Participates in AOG meeting
 - Monitors for potential safety or airworthiness issues

Fleet Events

- Wheel and Brake Fires
 - Numerous events throughout past year
 - G-100 thru G-450
 - Some damage extensive/expensive
- Circumstances surprising
 - No problems during takeoff aborts or landings
 - No problems in passenger service
 - All problems while taxiing
 - Troubleshooting brake problems
 - Testing brakes after maintenance
 - High speed taxi "training"

ilfstrea

- All taxi tests involved-
 - Higher than normal taxi speed
 - Abnormally high number of brake applications
- All but one aircraft were at light weight
- "Grabby Brakes" were a frequent reason for testing
- BTMS was available in several of the aircraft
- None of the crews realized they were overheating their brakes

Event Investigation

- Several events also involved
 - High speed stops on a runway
 - Braking with anti-skid OFF
- One major event caused by turning anti-skid OFF during braking at high speed

Cause for Concern

- Fire hazard
- Potential for mishap and injury
- Damage to aircraft
- Cost to Operators
 - Expensive repairs
 - Lost productivity
- Events occurring on a regular basis
 - MOL's & Breakfast Minutes not effective
 - Root cause not obvious

Brake Basics

- Brake Systems
 - Common to all aircraft with minor differences
 - Reliable
 - Comparatively simple
 - Maximum capability reserved for emergency use
 - Seldom if ever necessary
 - Limitations rarely approached
 - Minimal training required
 - System operation and use are intuitive

- Brakes vs. Engines
 - Brakes convert Kinetic Energy to Thermal Energy by Friction
 - Engines convert Thermal Energy to Kinetic energy by Combustion
- Drum and disk types both appeared circa 1900
 - Drum brakes by Louis Renault in France
 - Disk brakes by F. Lanchester in England
 - Poor reliability until
 - Jaguar C-Type 1953
 - Corvette Stingray 1965

- Early acceptance and widespread use in aviation
 - Better stopping performance
 - Resist fading caused by overheating
 - Recover quickly from immersion in water
 - Don't catch and hold contaminants
 - Braking is proportional constant response for a given application of force

Brake Performance

ilfstrea

- Friction is key
 - Between rotors and stators
 - Between tires and runway
- Force of friction between two surfaces
 - Opposes their relative motion
 - Depends on the strength of the force pushing the two surfaces together
- Friction between tire and runway limits useable brake friction
- Best performance
 - Highest tire and brake friction without skidding

- Static friction is greater than dynamic (sliding) friction
- Skidding results in lost performance
- Skidding tires offer little directional control
- Anti-Skid is designed to
 - Allow maximum pressure to disks and rotors (develop max friction) without skidding
 - React quickly to changing runway conditions
 - High operating pressure and flow required
 - Brake pistons release and fill quickly

- "Skid Pressure" The hydraulic pressure required to cause a skid with the available tire friction
- Tire friction varies with -
 - Tire composition and temperature
 - Runway surface
 - Contact force between tires and runway
 - Aircraft weight is greatest contributor
 - Other factors may also apply

Carbon

- Advantages
 - Light weight
 - Can absorb more energy for a given mass than steel
 - Withstands very high temperatures
 - Low coefficient of expansion
 - Resists thermal shock
 - Friction properties good up to 2000° F
 - Excellent wear characteristics in heavy use
- Disadvantages
 - Affected by debris, brake dust, & oxidation
 - Absorbs liquids (water, hydraulic fluid, de-icing fluid)

- Manufacture
 - Carbon-carbon composite
 - Woven carbon cloth
 - Solid carbon matrix
 - Chemical Vapor Infiltration method
 - Heated gas forms solid phase carbon with
 - Ceramic protects carbon from high heat
 - Silicon forms friction film
- Wear Type I
 - Low energy conditions or low applied brake pressure
 - Wear debris forms as particulate powder (sandpaper)
 - Most damaging

- Wear Type II
 - High energy conditions or high applied brake pressure
 - Plastic deformation of wear particles forms a smooth debris film
 - Smooth film reduces wear
 - Smooth film promotes strong adherent friction (glass on glass)

Certification

- TSO C26d, Aircraft Wheel/Brake Assemblies
 - Structural integrity
 - Maximum torque
 - Hydraulic overpressure
 - Endurance. 5cc total leakage and no malfunctions
 - 100,000 cycles at pressure used for max landing weight
 - 5,000 cycles at maximum available system pressure
- FAR 25
 - Functionality and/or maximum performance demonstrations of all brake system components
 - Test requirements are thorough and demanding

- Fuse Plug Integrity at maximum landing energy
 - Engines set at high idle limit
 - Taxi 3 miles with 3 intermediate stops
 - Close traffic to high speed landing at max LGW
 - Brakes on (Rapid/Full) at target groundspeed and held to full stop
 - Taxi 3 miles with 3 intermediate stops
 - Park in area minimizing wind effects
 - Wait until fuse plug temps peak and assure no releases

- Maximum Kinetic Energy Accelerate-Stop
 - Brakes worn to 10% remaining
 - Must be an RTO
 - Fires on or around landing gear are acceptable if they can be allowed to burn for 5 minutes before extinguishing is required for safety of airplane
 - Fuse plugs may release late in the stop if directional control not compromised
- Takeoff & Landing Performance Data
 - Six rejected takeoffs
 - Six landings on the same wheels, tires, and brakes

- Unreasonable test requirements sometimes aren't
 - Max KE RTO by left engine fuel cut
 - Verify anti-skid operation during bus power transfer
- Skid pressure varies greatly with gross weight
 - Testing in three weight bands
 - 100 Knots RTO's in 10,000 lb increments yielded stops within three aircraft lengths
 - Blown tire not noticed at light weight
 - 40-Knot taxi stops
 - 100 Knot Stop & Go

- Brake cooling
 - Light pedal pressure
 - Prolongs stop
 - Absorbs same energy
 - Results in same peak temperatures
 - Brakes cool much faster when not set
 - Cool brakes while pointing into the wind
 - Crosswind doesn't reach all brakes equally
 - Tailwind blows warm exhaust over brakes
 - 15 minutes airborne will cool any overheat condition
 - Gear extended at VIe

- Pilots all have a strong side/heavy foot
 - Brakes on one side will be hotter
 - Applied at higher speed
 - Held at higher pressure
- Pedal position affects feel
 - Pilot strength greatest near full extension
 - Easier to apply max force to distant pedal
- Crosswind affects brake temperature distribution
 - Pedals not even at brake application
 - Downwind brakes in greater contact with runway

- Ground spoilers increase skid pressure 200-300 psi
- Worn brakes get hotter
 - Less mass to absorb given energy
- Properly functioning anti-skid does not damage tires
 Flat spots indicate problems
- Max anti-skid at heavy weight is smooth and comfortable
- Max anti-skid at light weight or on contaminated runways is not comfortable

- Maximum performance braking can involve high risk
 - Mitigated by
 - Fully instrumented systems
 - Data recording equipment
 - Real-time monitoring by on-board engineer or telemetry
 - Orderly build-up of test points
 - Inspection by ground crew after every stop
 - Careful attention to brake temperatures
 - In-flight cooling between test points
 - Risk can be managed but not eliminated

- Turned onto taxiway and found both RH brakes on fire
 - Received an anti-skid fail message while conducting high speed taxi/rejected takeoff training. Turned anti-skid OFF and continued training until tower reported smoke from gear.
- While parked in front of the hangar, tires started going flat as fuse plugs melted
 - Performed two high speed taxi tests with high energy stops in an effort to alleviate chattering brakes. Desired results achieved and taxied back to hangar.
- Blew left main tires. Tires caught fire and had to be extinguished by the fire department.
 - Conducting high speed taxi for ops checks with anti-skid selected OFF.
- After turning off the runway the #1 & #2 tires caught fire
 - Troubleshooting "Brake Hot" message. Performed two high energy stops. #4 tire blew, other tires all flat spotted

- #4 tire blew, all other tires flat-spotted.
 - Crew performed high speed taxi with anti-skid OFF as requested by DOM.
- Taxied in to FBO ramp with flash fire in left wheel well
 - Brakes overheated during high speed taxi checks. All four MLG wheels and brakes replaced.
- Came to a complete stop at end of landing roll and all four brakes seized
 - During flight test program collecting landing performance data test pilot held brakes for five seconds at completion of stop. Steel brakes fused.

- 5 minutes later the left MLG brakes were found on fire
 - After returning to the ramp after two high speed taxi checks, the parking brake was set. Fire lasted 2-3 minutes and TE box sustained heavy damage.
- One FDR Analysis
 - Gross weight 65,000 lbs
 - 27 brake applications in 9 minutes
 - Speeds from 20 to 105 knots
 - BTMS available
 - Cumulative energy greater than 90 million ft/lbs

- Preventive Measures
 - General reminders have been unsuccessful
 - Brake energy information in the Aircraft Operating Manuals does not include cautions about testing
 - Develop a model-specific taxi test procedure
 - Define common terms
 - "Grabby", "Jerky", "Hot", etc.
 - Suggest technique for troubleshooting
 - Provide tab data for brake temperature expectations
 - Provide contact info for specialists in Tech Ops/Flight Ops
 - Brake test information on WAYPOINTS

Questions

