- **The Electrical Power System produces:**
 - 115 Volts **AC** is **generated** in order to produce 28 Volts **DC** via Transformer Rectifier Units (TRU)

- **AC**
 - Motors
 - Heaters
 - Chargers

- **DC**
 - Everything else

- **Two (2) separate systems/networks**

- A split bus system prevents a short on one side from affecting the other side
Operative side can power the inoperative side.

Power Distribution Buses (PDBs):

AC power is first sent to the PDBs which is where the Main AC buses are located.
- The Electrical Power System is controlled by two (2) Bus Power Control Units (BPCU)

- There are six (6) computers:

- There are two (2) 60 Hz Converters located in the tail compartment

• One (1) 60 Hz Converter active and the other on standby

• = Common household power
115 VAC is generated by:

NORMAL

L IDG APU GEN EXT AC R IDG

OPEN BUS TIE RELAY

L MAIN AC R MAIN AC

EMERGENCY AC BUS

RAT GEN

RAT
- DC System

28 VDC is produced by:

NORMAL

L ESS TRU ➔ L MAIN TRU ➔ AUX TRU ➔ R MAIN TRU ➔ R ESS TRU

L MAIN DC ➔ L AUX DC ➔ R AUX DC ➔ EXT DC ➔ R MAIN DC ➔ GSB

L ESS DC ➔ L MAIN BATT ➔ EBHA BATT ➔ UPS BATT ➔ R MAIN BATT ➔ R ESS DC

EMERGENCY
The Electrical Power System is controlled by two (2) identical and interchangeable microprocessors called BPCUs

- The \(\text{L BPCU R BPCU} \) control and make all logical decisions for electrical distribution and protection
- Traffic cops - Protectors of the buses
- Close and open contactors and/or relays to:
 - Efficiently supply power to the buses
 - Protect and isolate the electrical system from faults
- Output critical findings to the CAS
- Provides protection, power and logic to \(\text{AC DC} \) switch
- Monitor external \(\text{AC DC} \) power
- Control the No Break Power Transfer (NBPT)
- Fault detection, protection and notification:

1. **Fault detected by**

 L BPCU

 Bus contactor opened and locked out to protect the bus

2. **L BPCU**

 Notifies the crew via CAS message

 LAC Power Fail

 LAC Reset

3. **Can be reset by the crew via the switch if the fault is no longer present**

 RESET

 AC = **CTRL** + **ALT** + **DEL**
- BPCU logic: \[\text{ESS before MAIN} / \text{L before R} \]

- Located in:

 - **Left Electronic Equipment Rack (LEER)**
 - **Right Electronic Equipment Rack (REER)**
- Control the bus tie relays which allow operative side to power the inoperative side in the event of a short/fault on one side.

- Control and monitor:

 - **L BPCU**: NBPT function
 - External 115 VAC Power
 - **R BPCU**: External 28 VDC Power
- **No Break Power Transfer (NBPT)**

 - Controlled by [L BPCU]
 - Power transfer without a momentary interruption
 - Matches the phases of the IDGs and/or APU GEN

- **No Break**
 - IDG
 - No failure

- **Break**
 - No IDG
 - And/or failure

- **Failure**
 - Eng
 - A Fire
 - Handle pulled

- EXT AC ↔ APU GEN

- GEN
 - R IDG Failure
 - Failure
INTEGRATED DRIVE GENERATORS (IDG)

- Two (2) Engine-driven IDGs

- Located on the engine's accessory gearbox

- IDG \(\leftarrow \) Constant Speed Drive (CSD)

 - Oil-cooled generator (oil is cooled by fan air)

- IDG \(\leftarrow \) Rated at 40 kVA

 - Produces: 115 VAC, 400 Hertz, 3-phase

- CSD converts variable engine speed to constant speed at the generator (12,000 RPM)
- Dispatch with an IDG u/s not permitted due to AFM 015 G650ER-2016-03 APU Sealant

- Generator switches:

```
+----------------+     +----------------+
| L GEN ON       |     | R GEN ON       |
+----------------+     +----------------+
     | L IDG          |     | R IDG          |
+----------------+     +----------------+
   | L MAIN AC      |     | R MAIN AC      |
+----------------+     +----------------+
    | Pressed in     |     | Pressed in     |
|      and        |     |      and       |
|      IDGs power |     |      failed/isolated |
|      respective|     |      from       |
|      AC bus    |     |      respective|
|                |     |      AC bus    |
+----------------+     +----------------+

L GEN OFF

Pushed out and unpowered

L Generator off

R AC Power Fail
```
Auxiliary Power Unit (APU) Generator

- The APU provides an auxiliary source of:
 1. Electrical AC power - Ground
 2. Backup Electrical AC power - Air

- The APU can be started with L MAIN BATT and R MAIN BATT power.

- When the APU reaches 99% RPM + two (2) seconds, the APU generator comes online and can power all AC and DC buses.

- APU GEN rated at 40 kVA produces: 115 VAC, 400 Hertz, 3-phase.

- Refer to AFM OIS G650ER-2016-03 APU SEALANT for APU inflight operation limitations.
RAM Air Turbine (RAT)

- Backup AC Generator

![Diagram of electrical power control and RAT system]

- L-6 AC Power Fail
- L-9 AC Power Fault
- APU Power Fail
- RAT Generator On
- The RAT, once deployed by the crew, converts airstream energy to electrical energy.

- RAT GEN MUST be switched OFF prior to deploying the RAT. Then, wait 30 seconds for RAT to stabilize prior to switching its GEN on.

- RAT GEN Rated at 15 kVA, produces: 115 VAC, 400 Hertz, 3-phase.
Operating Envelope:

- **≥ 180 kts** — **≤ M0.925** (Mmo)
- Sea Level → FL510

- **< 180 kts** the **RAT GEN** drops offline and the power the **buses**

- Rotates counter clockwise

- Six (6) percent fuel penalty

- RAT TEST = maintenance function only

- Once deployed the RAT can't be stowed in flight

- Guidance Panel: no vertical modes (ADS 4)

- Land with flaps **20°** (as per the QRH) so that in the event of a go-around the **AUX** are not used to power the **pump** to retract the flaps from **39°** to **20°** (save the batteries)
GENERATOR CONTROL UNITS (GCU)

- GCUs are microprocessors that control generator output (quality assurance) and provide fault protection.

- There are (4) GCUs:

 - IDG
 - APU GEN
 - IDG
 - RAT GEN

 - IDENTICAL
 - INDEPENDENT
 - INTERCHANGEABLE
 - NON-INTERCHANGEABLE

- GCUs are located in the LEER and REER.
- If GEN parameters are outside limits:
 - GCU takes GEN offline
 - GCU notifies BPCU
 - BPCU notifies CREW via CAS:
 - L AC Power FAIL
 - L Generator FAIL
 - GCU can be reset by cycling associated generator switch
EXTERNAL AC/DC Power

- External AC power
 - Receptacle is located on the right side of the fuselage
 - 30 kVA, 115 VAC, 400 Hz, 3 phase
 - Can power all AC buses and through the TRUs all DC buses are powered
 - BPCU checks quality of power before allowing onto aircraft

- External DC power
 - Receptacle is located on the right side of the fuselage
 - Powers all DC buses
 - Can be used to power the GSB
 - Use of external DC power to start the APU is prohibited
A Static Inverter converts DC to AC power in order to power Channel 1 of the Cabin Pressure Controller (CPC).
- In the unlikely event that normal (IDG) or back up AC power (APU GEN) is not available the RAT GEN can continue to power CPC.

- The Static Inverter is located in the REER.
- TRUs are powered by the main AC buses.
- A TRU converts 115 VAC to 28 VDC.
- TRUs are located underneath the floor.
- LTRU, LTRU, RTRU, RTRU power their own buses.

- AUX TRU powers the L AUX DC, R AUX DC buses and will take over the duties of a failed ESS or MAIN TRU using the following priority process:

ESS before MAIN

L before R

1. Sheds L AUX DC, R AUX DC buses
2. L ESS DC
3. R ESS DC
4. L MAIN DC
5. R MAIN DC
TRU switches allow opposite bus to power a TRU that lost power due to the failure of its own AC.

TRUs are rated at 250 amps.

GROUND ops - TRU load limits:

- 80%
 - L ESS TRU
 - L MAIN TRU
 - R MAIN TRU
 - R ESS TRU

- 40%
 - AUX TRU
Ground Service Bus

- When you don’t want to wake up the beast

- Ground Operations (APU shutdown)
 - Refueling
 - Engine oil
 - Potable water servicing
 - Hydraulic fluid servicing
 - Wheelwell lights

- Three (3) GSB switches
 - Security/Ground Service Panel
 - REER Maintenance Panel
 - Tail Compartment

- Power Sources (Priority)
- Rotating beacon light is powered by the **GSB** when the **R MAIN BATT** is the source of power.

- At least one of the following must be open when using one of the **GSB** switches:

![Diagram of an airplane showing the main entrance door, security/ground service panel, and tail compartment.](image-url)

ELECTRICAL POWER CONTROL

![Diagram of electrical power control system showing bus ties, generator sources, and main batteries.](image-url)
Two (2) Main Batteries:

- Located in the tail compartment
- Nicad, 21 cells, 95 pounds
- 28 VDC, 53 amp/hour

Purpose:

1. Start the APU - uses only but both switches must be selected on

 Note: Minimum 22 volts on both batteries to start the APU

2. Operate aux hyd pump -

3. Power ESS DC buses - (if no other source of power)

Main Batteries

ON ON

LEFT RIGHT

Switchlights illuminate (Discharging)
• 16 minutes with two (2) APU start attempts

• Must be removed from aircraft in cold soaked conditions \(\leq -20^\circ C \) and stored in a location warmer \(> -20^\circ C \) and cooler than \(+40^\circ C \)

• If \(\leq 22 \) volts but not less than \(7 \) volts the batteries can be recharged as follows:
 - Ext AC power connected
 - Batt switches ON ON

• The L MAIN Batt R MAIN Batt are normally recharged by the main AC buses
Flight Control Batteries

There are two (2) Flight Control System (FCS) batteries:

1. **Electrical Backup Hydraulic Actuator (EBHA) battery**

 ![EBHA Battery Diagram]

2. **Uninterruptible Power Supply (UPS) battery**

 ![UPS Battery Diagram]

The FCS batteries can power the flight controls for thirty (30) minutes.

- Illuminated **ON** if no AC power is being produced and they power their own buses (discharging)

![Diagram of EBHA and UPS Batteries with buses]
- **System Power ON Self Test (SPOST)**

 - **OFF** selected ON first then **OFF** selected ON
 - Forty five (45) second TEST
 - No electrical interruptions during SPOST or a complete power down is required

- **FCS Batteries - Charger/Transformer Rectifier**

 ![Diagram](image)
Electrical Backup Hydraulic Actuator

- Nicad, 28 Volts, 53 Amp/hour
- Located in the tail compartment

- Powers seven (7) EBHA actuators

- Can be charged by RAT GEN via the RAT

- Must be removed from aircraft in cold soaked conditions ($\leq -20^\circ C$) and stored in a location warmer $>-20^\circ C$ and cooler than $+40^\circ C$
Uninterruptible Power Supply (UPS)

- Lead Acid, 24 Volts, 10.5 amp/hour
- Located in the REER

- Powers Flight Control Computers channels 1A and 2B

- Can be charged by RAT GEN via the Emergency AC Bus
EMERGENCY BATTERIES

- There are two (2) E-BATs
 - A Forward and an Aft E-Batt

- Located in:

 - Sealed, lead acid with its own internal charger
 - 24 Volts, 10.5 amp/hour
 - Fortyfive (45) minutes duration, approximately
• Powers the following buses:

- **L Emergency**
- **R Emergency**
- **Flight Instrument**
- **FWD E-BATT**
- **AFT E-BATT**

• When "Armed" the E-BATTS come ON automatically when power to the **L ESS DC** and/or **R ESS DC** drops below 20 volts, even momentarily.

• After a Break Power Transfer the E-BATTS will come ON and must be re-armed to avoid depletion.

- **BREAK**
 - No IDG
 - AND/OR
 - Failure

- **EXT AC ↔ APU GEN**
- **GEN IDG or R IDG Failure**
- **ENGINE Failure**
- **A Fire Handle pulled**
• **E-BATTs power the following equipment:**

- Emergency Lighting
- Exterior Emergency Lights
- Standby Flight Displays (2)
- Inertial Reference Units (3)
- Three (3) Audio Control Panels (ACPs)
- MCDU 1 - STby Engine Instruments
- MCDU 3 - Backup Radios (VHF1/NAV1)
- Two (2) clocks

• **An integrated charger/transformer rectifier recharges the E-BATTs**
• The E-Batt can be used in an emergency to open the electric main entrance door (EMED) via three (3) switches, two (2) external, and one (1) internal.

EXTERNAL SWITCHES:

- Security/Ground Service Panel
- Main Entrance Door Emergency Switch

The EMED is opened via either one of these on the first flight of the day to confirm that the E-Batt has sufficient battery charge.

INTERNAL SWITCH:

- Vestibule Switch
NORMAL - EMERGENCY

NORMAL

- L IDG and R IDG → All AC/DC buses
- L IDG or R IDG → All AC/DC buses

APU GEN

RAT GEN

\(\geq 180 \text{ KTS} \)

Emergy AC Bus

- L LESS TRU
- L LESS DC
- R LESS TRU
- R LESS DC

TR/CHRG

- UPS BUS
- EBHA BUS

L MAIN BATT and **R MAIN BATT**

\(\geq 2 \text{ APU START ATTEMPTS} \)

EBHA BATT and **UPS BATT**

\(\geq 180 \text{ KTS} \)

00:16 MINUTES

EBHA BUS

00:30 MINUTES

FWD E-BATT and **AFT E-BATT**

(ESS DC buses < 20 Volts)

EMERGENCY

Standby Flight Instruments

IRUs

Comm Radio

Emerg. lights

00:45 MINUTES

(approximately)
Questions, comments or errors...please send me an email: ivan.luciani@gmail.com

Thank you!