TIRE WEAR

John Salamankas
“Tires are one of the most underrated and least understood components on the aircraft.”
Tire Wear

OUTLINE

• Pilot’s perspective
 – Oversee care
 – Contribute to wear

• Tire facts

• Wear

• Damage

• Proper Care
Importance of Proper Care
Importance of Proper Care
Aircraft speed and load requirements are most severe
Tire Design Requirements

• Low ground bearing pressure, best “flotation”
 – Large amount of deflection

• Intermittent, short term operation
 – Can tolerate greater deflection

• Compared to automobile tires
 – 3 times the speed
 – 3 times the deflection (30% vs. 10%)
 – 6 times the pressure
 – 13 times the load
Tire Design Requirements

- TSO-C62e “Aircraft Tires
 - Dynamometer testing (same tire)
 - 50 takeoff cycles at maximum load and speed
 - 10 takeoff cycles at 150% load
 - Taxi cycle matrix
 - Inflation to 4 times rated maximum for 3 seconds
 - No degradation of tire material properties after:
 - -40° F for 24 hours
 - +160° F for 24 hours
 - 300° F for 1 hour at wheel-tire bead seat
Aircraft Tire Construction

- Grooves
- Buff line cushion
- Breakers/belts
- Tread reinforcing ply
- Innerliner
- Casing plies
- Chafers
- Ply turnups
- Flippers
- Wire beads
- Apex strip
- Bead heel
- Bead toe
Tire Deflection

- Tire contact area is flat
- Attempts to return to normal shape
- Overshoots because of high centrifugal force
- Rebounds with overshoot
- Sets up “traction wave” in tread surface
- Deflection sometimes extreme, varies
 - Load
 - Speed
Tire Deflection

- Tire Leaving Contact Area
- Rotation
- Normal Periphery
- Traction Wave
Tire Wear

250 mph 4200 rpm 1.9” deflection
Tire Wear

TRACTION WAVE vs. UNDERINFLATION

Proper -10 psi -15 psi -20 psi
Tire Wear

- Flexing causes excess heat to build
 - Weakens material
 - Leads to tread separation

- Flexing increases with speed and weight
Braking and Cornering

- Wear increases with braking
- Anti-Skid most effective at 30% skid
 - Leaves rubber tire tracks
 - Can see antiskid releases
- Where do we see the most rubber?
 - Touchdown zone
 - High speed/sharp cornering
- Runway surface plays major role
Tire Wear

New Brushed Concrete
Tire Wear

Deteriorated Concrete
Tire Wear

Grooved Concrete
Tire Wear

NORMAL

Even tread wear on this tire indicates that it has been properly maintained and run at correct inflation pressure.

EXCESSIVE

Worn to the breaker/casing plies, the tire should not be left in service or retreaded.
Tire Wear

OVERINFLATION

Continuous overinflation accelerates center tread wear. It reduces traction while making tread more susceptible to cutting.

UNDERINFLATION

Excessive tread shoulder wear results from chronic underinflation. It increases the chance of damaging shoulders and sidewalls which shortens tire life because of excessive flex heating.
Tire Wear

- Correct inflation pressure is most important
- Check daily with an accurate gauge
 - Normal to lose 5% in 24 hrs
 - Sidewalls are vented to prevent blisters/separation
 - Visual inflation check inadequate
 - Paired wheels share load
 - Flat spot on bottom
- Inaccurate gauges are a major source of improper inflation pressure
- Check when cool
- Never bleed off excess pressure from hot tires
Tire Damage

Tread Chunking

Rough or Unimproved Runway
Tire Damage

Tread Separation

Excessive Loads, Flex Heating, Under Inflation
Tire Damage

Flat Spot

Locked Wheel/Anti Skid Fault
Tire Damage

Rubber Reversion
Hydroplaning
Tire Damage

Chevron Cutting
Grooved Runway
Tire Damage

Lower Sidewall Compression Break
Underinflation or Overloading
Tire Damage

• Primary causes of damage
 – Low inflation pressure
 – FOD

• Most FOD from hangar floor and ramp
 – Good housekeeping
 – FOD sweeps

• Secondary causes
 – Contaminants
 – Ozone
Tire Care

• Tires no less important than engines
• Tire failure potentially catastrophic
 – FOD engine or aircraft system
 – Reduced RTO braking
• Two simple steps for safety
 – Proper inflation
 – Good housekeeping
Tire Wear
Questions