ICE CRYSTAL ICING
&
HOT TOWERS

John Salamankas
“Hot Towers” presented to CAB in 2007
 – Gulfstream encounters described and analyzed

“Ice Crystal Icing” addressed in 2008
 – Data base of air carrier encounters
 – Few Gulfstream encounters

Both topics presented numerous times
 – Question arose

Are these hot tower encounters or not?
 – If not, what?
Hot Towers or Not

Definition

• NASA definition: “Towering rain cloud that reaches the top of the tropopause”

• Associated with tropical cyclones and hurricanes

• Occur between 36º N and 36º S latitude

• Diameter up to 3½ miles

• Duration ½ to 2 hours

• Size and duration make them difficult to study

• Useful predictors of hurricane growth
Tropical Rainfall Measurement Mission

Place mouse pointer on map and right click to play movie clip
Hot Towers or Not

FL410 over equatorial Africa
 – Scattered thunderstorms below
 – Cirrus cloud, light turbulence, SAT -63°C

A/T disconnect, CAS messages

SAT at -48°C continued warming to -26°C

EPR indicated low, Mach reduced to .67

After 22 minutes, temperature rapidly returned to -56°C

All systems normal
Hot Towers or Not

GIV Encounter

- Second event, over the Pacific
- Weather conditions and aircraft reaction similar
- Engine vibration developed to exceedance levels
 - Engine to idle, reversed course to exit conditions
 - Set course for alternate and descended
- Vibration diminished during descent, gone at 15,000’
- Engines inspected - completely normal
Hot Towers or Not

GV Encounter

- FL410, Pacific ocean near equator
 - Scattered thunderstorms below
 - Light turbulence, cirrus cloud, -63°C

- A/T disconnect, “L-R Eng Backup Air Data”, “MADC Miscompare”

- SAT -48°C continued warming to -24°C

- Altimeters and Mach indications all disagreed.

- Slow descent after speed decayed

- After 25 minutes temperature rapidly returned to -56°C
Hot Towers or Not

Hot Tower Conditions

- High altitude, ISA or colder temperatures
- Heavy moisture in lower altitudes
- Nearby convective activity
 - No radar returns at event location
- In cirrus cloud
- Light to moderate turbulence
- TAT probe anomaly
Hot Towers or Not

Ice Crystal Icing

- Convective activity lofts ice crystals in significant quantities into the upper atmosphere
 - Ice crystals, not liquid water
- Invisible to aircraft radar and ice detectors
- No airframe icing
- Crews unaware of potential hazards
- Greatest hazard is loss of engine power
- 150 air carrier events in FAA/Industry data base
Hot Towers or Not

Ice Crystal Icing

- Ice crystals previously thought harmless
- Theory – bounced off airframe and engine surfaces
- Reality – crystals melt due to compression effects
 - Pass through fan section
 - Enter core and melt on warm surfaces
 - Moisture traps additional crystals
 - Ice builds up, sheds into compressor
 - Engine surges, rolls back, and flames out
Hot Towers or Not Ice Crystal Icing Risk

• No engine can be considered immune

• Engine susceptibility varies with design
 – Blade arrangement and geometry
 – Engine control technology
 • Variable bleed valve scheduling

• Events have driven AD’s and AFM changes
 – CF6-80 engine on B747, B767, and MD-11
 • Engine anti-ice ON any time TAT 10º or lower
 – Beechjet (Hawker 400XP) dual engine flameouts
 • Engine anti-ice ON during high altitude flight in the vicinity of visible moisture and convective activity
• 2007 report by a GIV of high engine vibration in VMC conditions during an enroute descent
 – Had flown in vicinity of strong convective activity for a long time
 – Fan blade icing suspected

• GV report of high EVM during VMC descent
 – Airplane had just exited IMC
 – Fan blade icing suspected

• G550 reported high EVM during VMC descent
 – Flew over thunderstorms in tropical storm system
 – Fan blade icing suspected
Hot Towers or Not Gulfstream Ice Crystal Events

• GIV dual engine flameout in 1991
 – In vicinity of a huge convective storm
 – Surrounded by towering cumulus

• Both engines were successfully restarted

• FDR analysis showed abnormal TAT indications prior to the event

• Report attributed flameout to heavy water ingestion

• In retrospect, ice crystal icing should be considered as the probable cause
• FAR 25 requires flight testing in natural icing

• **Equipment and Systems** – Perform their intended function under any foreseeable operating conditions

• **Airplane** – Safely operate in “continuous maximum” and “intermittent maximum” icing

• **Engines** – Operate throughout flight power range, including idle, with no adverse effects from ice accretion

• “**Maximum Icing**” defined by
 – *Liquid* water content
 – Droplet size
“Continuous Maximum” – difficult to find
- Narrow altitude bands
- Small temperature range
 - Total temp below freezing
 - -8°C Ideal
 - -13°C Snow
 - -20°C Solid

Testing performed in moisture laden stratus clouds below 20,000 ft.

No exposure to ice crystals
Hot Towers or Not

Ice Crystal Conditions

• High altitude, ISA or colder temperatures
• Heavy moisture in lower altitudes
• Nearby convective activity
 – No radar returns at event location
• In or just exited cloud
• Light to moderate turbulence
• TAT probe anomaly
Hot Towers or Not

Hot Tower Conditions

- High altitude, ISA or colder temperatures
- Heavy moisture in lower altitudes
- Nearby convective activity
 - No radar returns at event location
- In cirrus cloud
- Light to moderate turbulence
- TAT probe anomaly
• Cause and effect explanations not equally credible

• Engine ice crystal icing explained by basic physics
 – Large data base of similar events
 • FDR data studied
 – P&W/FAA confirmation by flight test

• Experience and understanding have resulted in more stringent icing certification requirements
 – FAR 25 adding *Large* super cooled droplet icing
 – FAR 33 adding *Ice Crystal* and *Mixed Phase* icing
Hot Towers or Not

• Hot towers are real, but are the encounters?

• Parcel - environment temperature difference is a measure of updraft severity
 – 4°C Strong
 – 5°C to 7°C Severe
 – 30°C “Unprecedented”

• Events report only light to moderate chop

• No reports from inside top of towering CB

• Encounters of :20 to :25 minutes span up to 200nm
Tropical Rainfall Measurement Mission

Place mouse pointer on map and right click to play movie clip
Hot Towers or Not

If Not, What?

- Temp rise *assumed* due to hot tower
 - Is the indication correct?
 - Could there be another cause?

- Focus on Total Temperature Sensor
 - Gulfstream probes same as Boeing & many others
 - Identical externally
 - Minor internal variations by PN
 - Heater current type
 - Base plate contour
 - Connector type
Hot Towers or Not Goodrich Total Temp Probe
Hot Towers or Not Goodrich Total Temp Probe

- Review of sensor specs and fault history
 - High MTBR
 - 60% heater failures, 2% sensor failures

- Part Number change for PlaneView aircraft
 - Performance enhanced in extreme icing conditions
 - Inlet scoop change to reduce clogging by ice crystals
 - Improved internal heat conduction to critical surfaces
 - Increased heater power

- No Hot Tower reports from PlaneView aircraft
Hot Towers or Not

Probe Enhancements

102LA2AG 102LK2AG 102LA2AG 102LK2AG
Goodrich engineering confirmed
- Ice crystals can overwhelm heater and clog probe
- Reduced airflow allows heater to warm sensor
- Sensor may read 0°C, ice point of melting crystals
 - 0°C reported numerous times in airline data base
- Rapid return to normal is consistent with heater clearing ice from probe

Probes became logical suspects in tower events

Suspicion only, confirmation needed
• NOAA weather research GIV experienced several unexplained temperature increases at high altitude

• Aircraft records data from numerous sensors
 – Production standard total temp probe
 – Scientific temperature probes (2)
 – Dewpointers

• During some hot tower type events
 – Only two of the three temp probes reacted
 • Third probe continued to indicate normally
 – Dewpointers showed large increase in water vapor
• Recent events (Continued)
 – Dewpointer temperatures increased first
 – Dewpointer temperature was warmer than probes
 • Considered “meteorologically incorrect”

• Flight Meteorologist is investigating
 – “..has to be something going on to cause this around the tops of thunderstorms”
 – Important meteorological concept
 – Safety implications

• The answer to one question may hold the key
Hot Towers or Not

• If the air was really warmer –

 Why didn’t all three probes indicate a hot tower?
Hot Towers or Not

New Questions

Investigation has raised new questions

– What caused the self-clearing engine vibrations
 • Ice shedding procedure not used
– During one event, only one engine vibrated
– Did ice crystals affect the engines and not the TAT
– Why didn’t we know about probe icing
 • How much of a problem is it
– Some Gulfstream events included pack overheat
 • Is ECS affected by ice crystals
– Why is the temperature in the tower often near -26°C
 • Typical temp rise between SAT and TAT at M.80
Hot Towers or Not

• Title question may be answered
 – Towers are real
 – Encounters probably aren’t
Questions