Landing Gear 101

John Salamankas
Landing Gear Recycling

• Discussion: Request that Gulfstream provide guidance on the use of recycling the gear to achieve a normal gear configuration

• Action: Will review history of the practice and provide Gulfstream opinion.

• Status:
Landing Gear 101

- **Purpose** – Provide recycling guidance as requested
 - Facts
 - Logic
 - Opinions

- **Recent events justify the request**
 - Landing gear problems increasing in frequency
 - #2 Priority action item for RQAAT

- **Goal**
 - Offer a sound opinion
 - Same success as Brakes 101
Outline

- History
- Gear System Basics
- Failure Modes
- Fleet Examples
- Considerations
- Opinions
History

- 40+ years on the jet fleet
 - Gear nearly same from G-II through G-550

- 2 Nose gear up landings, almost a 3rd
 - GIV packed with frozen slush
 - GV mechanical failure of critical part
 - G-II nose strut wiped with Skydrol rag

- Main gear has always come down
 - Aggressive maneuvering
 - Bounces and Scuffs
 - Improvised emergency procedures
History

• Emergency system has always “worked” (Nitrogen released and routed to actuators)

• Sometimes unable to overpower a mechanical problem
 – Neither was 3000 psi hydraulic pressure

• One case where routed to a ruptured actuator
Recent Trends

- G-1159 through G-VSP gear problems
 - Corrosion
 - Wear
 - Maintenance
 - Rigging and adjustments

- G-IVX, G-V, & G-VSP issues involve the above, plus
 - Electrical control (solenoid)
 - Hydraulic pressure bumps
• Normal system
 – Control is mechanical or electrical
 – Power is Hydraulic
 – Indication is electric

• Emergency system
 – Control is mechanical
 – Power is pneumatic
 – Indication from normal system
Gear Basic Function

• Landing gear handle
 – 2 position, UP/DOWN
 – Controls a Selector Valve
 • Routes hydraulic power to each landing gear

• 3 gear operate independently of each other
 – Operating sequence is controlled by mechanical linkage

• “Gear Down” indication via independent electrical circuits
Gear Basic Function

- Differences between models are minor
 - Landing Gear Selector Valves
 - G-1159 and G-IV are mechanical with sliding spools
 - G-IVX, G-V, G-VSP are solenoid-controlled
 - Dump Valve
 - G-1159 and G-IV have separate dump valve
 - mechanical reset
 - G-IVX, G-V, G-VSP use combined selector/dump valve
 - reset is electric
 - Design operating pressure
 - 1500 psi for G-1159
 - 3000 all others
Gear Basic Function

• Emergency Extension
 – Mechanical control releases Nitrogen
 • Nitrogen pressure shifts dump valve
 – Return path to reservoir for up-side hydraulics
 • Dedicated routing for pressure to each gear
 • Shuttle valves on actuators for door, uplock, and gear
 – Shifted by nitrogen
 – Allow nitrogen to power the actuators open/down
 – Shuttle valves are common to normal & emergency systems
 • No sequencing or timing
 – Gear will push door out of the way
Failure Modes

CONTROL

- Handle or selector valve
 - Mechanical
 - Restricted movement
 - No movement
 - Electrical
 - Safety solenoid
 - Selector/Dump valve solenoid
 - Wiring & connections
Failure Modes

HYDRAULIC POWER

• Pump failure
• Fluid loss

INDICATION

• Only 1 switch per gear for “gear down”
• 2 bulbs per capsule
• Ess DC power
 – Loss is possible but not likely
Failure Modes

MECHANICAL SEQUENCING

<table>
<thead>
<tr>
<th>GEAR DOWN</th>
<th>GEAR UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doors Open</td>
<td>Doors Open</td>
</tr>
<tr>
<td>Uplocks release</td>
<td>Downlocks release</td>
</tr>
<tr>
<td>Gear extends</td>
<td>Gear retracts</td>
</tr>
<tr>
<td>Doors close</td>
<td>Doors close</td>
</tr>
</tbody>
</table>
MECHANICAL SEQUENCING

• Sequencing linkage
 – Lightly loaded mechanical connection to valves
 – Positions valves to control flow to actuators
 • Doors
 • Uplocks
 • Landing Gear
 – Bungees
 • Spring-loaded units in the linkage
 • Extend to reposition valves
 • Maintain tension on the mechanical links
Failure Modes - Bungee

Bungee Assy, Uplock Linkage, Main Landing Gear

1159LM20256-1 CYLINDER
1159LM20255-5 ROD END
G101-268 SPRING
Figure 20: Photomacrograph of the corroded surfaces of the spring
Failure Modes

MECHANICAL SEQUENCING FAILURES

• Linkage
 – Broken
 • Doesn’t move
 – Binding
 • Moves partially
 • Moves sometimes
 • Doesn’t move at all
 – Rigging out of adjustment
• Result
 • Components don’t operate
 • Operate but interfere with each other
Failure Modes - Sequencing
• “Minor” difference in electrical vs. mechanical control proved to be significant

• Solenoid operation causes rapid spool shift
 – Pressure transients in gear lines
 • Positive (spikes)
 • Negative (suction force)
 • Transients greatest at end of lines (NLG)
 – G-V & G-VSP lines longer than G-IVX
 – NLG uplock actuator may shift toward open
 – Sequencing linkage moves door control valve to blocked ports region
 – NLG “slow to operate” or stays up
NORMAL WEAR

- Bushings, Bearings, and Pins
- Parts move out of alignment and bind
 - Gear slow to extend
 - Gear may not lock down
- Most prevalent with NLG
- Same NLG symptoms as “pressure bumps”
Failure Modes

1 Bushing Undersize

1/3 Liner Missing

Within Limits

1 Bushing undersize
Failure Modes - Wear
Failure Modes - Mechanical

DOOR OPEN HYDRAULICS

SHUTTLE VALVE HOUSING

EMERGENCY AIR LINE

Gulfstream®
Things to Consider

- Cause of the problem
 - Hydraulic
 - Electrical
 - Mechanical

- Recent aircraft maintenance

- Recent gear behavior

- Inflight problems that can’t be duplicated on jacks are usually electrical

- Slow to operate may be binding, rigging, pressure jumps
Things to Consider

- **No response to selection**
 - Electrical – bad solenoid, wiring, or no power
 - Mechanical – dump valve shift or leakage

- **Get any response to gear selection**
 - Problem is not electrical (G-IVX, G-V, G-VSP)
Recycling

• We recycle in the hope things will get better
 – Sometimes they do

• There is an equal chance they will get worse
 – Lately they have

• There is reluctance to use the emergency system because reset requires maintenance action
 – 40 man-hours
 – 1 day

• Aircraft with electrical control of gear selection may get a different hydraulic response by recycling
 – Better or worse
Recycling

• Recycle something that’s binding
 – May be freed
 – May stick in a worse position

• Aircraft with mechanical control of landing gear selector valve (G-1159 series & G-IV)
 – It makes no sense to recycle

• If unsure where some gear component is
 – It makes no sense to recycle

• If you know something is out of sequence
 – It makes no sense to recycle
Recycling

- Gear door OPEN with gear handle UP
 - Something is out of sequence, but
 - The open door is out of the way
 - Put handle back down to recycle
 - Door may interfere with gear
 - If gear goes down but doesn’t lock
 - Bungee likely jammed in extended position
 - Retract gear so door is known to be clear
 - Blow the gear
 - Put handle down for normal indication
Opinion on Recycling Gear

- Sources and their experience
- G-1159 series and G-IV (mechanical gear selection)
 - Do not recycle
- G-IVX, G-V, and G-VSP
 - Recycle once if no response to gear down selection
 - Recycle once if nose gear doesn’t go down but both main gear do
- For all aircraft
 - If any gear does not retract after takeoff select gear down and return to the field for landing and troubleshooting on the ground.
More History

• There have been many cases where recycling has helped.

• There have also been many cases where it made things worse. Recently this is the trend.
 – Recycle to get something up, then not get gear down
 – Recycle to get something down, get less

• For 40 years there have been no cases where an emergency extension made things worse.
Questions