the learning never stops!

  Oceanic Departure

International Operations




A clear delineation of preflight tasks can ensure all duties are accomplished in a timely manner and a good level of crosscheck exists between pilots. A possible technique is to have the PIC accomplish all plotting and master document work while the SIC completes the aircraft exterior inspection. Once the interior inspection begins, the PF programs the FMS while the PM accomplishes the aircraft interior inspection checklist. Once that is done, the PM checks the FMS entries while the PF turns his or her attention to other airplane related matters.

Master Document.


Figure: Master Document Example, (Eddie's notes)

[AC 91-70A, ¶3-5.a.] ICAO Annex 2 requires the use of a journey logbook, also known as the "master" document. This "master" document is typically a computer flight plan (CFP). Operator procedures must include a designated "master" document for use on the flight deck. This document must include information that sequentially lists the waypoints that define the routes, distances between the waypoints, and any other navigation information pertinent to the cleared route. Misuse of the master document can result in serious navigational errors.

The flight deck can have multiple copies of the electronic flight plan but only one of these can be used as a “Master Document.” That document should have the word “Master” on it and will be used for all official record keeping.

Our example KBED-LSGG master document includes a cover page, pages on equal time point information, NOTAMS, weather, airport information, and a track message. For the sake of organization, we staple these together and label the cover page "Master Document." While some crews like to have a copy for each pilot, I discourage the practice to avoid recording required items on the wrong copy. If we have an extra copy, I store it outside the cockpit.

Flight Plan Entry


Figure: Flight Plan Uplink Page, (Eddie's aircraft)

You have several options for getting the flight plan from the Master Document to the FMS, each with its own set of challenges. Among the options:

  • Manual entry — If you are diligent and careful, you can get every single point in the flight plan into the FMS. Make sure you don't input any extra points not on the filed flight plan, such as the TOC (Top of Climb) or TOD (Top of Descent). Some flight plans will include FIR boundaries, don't put those in. If the flight plan shows any ETPS (equal time points), leave those out as well. This method risks entry errors due to reading and typing mistakes.
  • Disk, Punch Card, or Memory Stick — Some FMS have provision for saving a flight plan to a memory device which can be read by the FMS. While this method eliminates the chance of pilot reading or typing error, it risks the use of the wrong memory device and uploading a similar, but wrong flight plan.
  • Satellite Uplink — If your FMS provides for an electronic downlink of the flight plan you can eliminate most potential pilot induced errors, except one notable error from which all three methods suffer, next paragraph.
  • FMS Limitations — No matter which method you use, it is imperative you check every leg of the master document's flight plan against that in the FMS. Some aircraft have their own peculiarities that require cross checking. Earlier GV's, for example, had a 99 leg limit on FMS flight plans and would simply drop any legs over the limit.

    The G450 offers a reliable satellite downlink and we have our flight plan in its entirety on all three FMS.

    Flight Plan Winds


    Photo: MCDU PERF Plan, (Eddie's aircraft)

    Some FMS will not automatically include downlinked winds and you will have to take steps to ensure the winds are included in the FMS flight plan. A few cautions:

    • A downlinked wind may be tied to the flight plan itself and could be hours out of date. You should either update each leg with current winds or downlink current winds if available.
    • See: G450 FMS: Update Winds.

    • Entering an average wind might work for some areas of the world but not others. Between Hawaii and California you normally have steady winds, but not always. Between the U.S. and Europe the winds often change dramatically half way across, but not always.
    • You should get to know how your FMS adapts to changes in the flight plan with previously downlinked, averaged, or manually entered winds. Some FMS will zero the winds for some types of changes.
    • See the last part of the story, Flight Lessons / Air Mass, Twenty-three years later for a demonstration on how this can become a very big problem.

    FMS Flight Plan Versus Filed Flight Plan


    Figure: Master Document Example, Page 5 (Filing Strip), (Eddie's Notes)

    You should check the flight plan that was actually filed versus what is in your FMS, just in case. Even a down linked flight plan could have differences that are important. At some locations the local airport is required to enter the flight plan manually and may give you a copy of what they filed. Use that against your FMS.

    Our example trip was filed through ARINC-Direct and the last page of the master document includes the filed flight plan. We check that against our primary FMS and are satisfied they are the same.

    Filed Flight Plan Verification


    Figure: Master Document Example Page 2, (Eddie's Notes)

    [AC 91-70A, ¶3-5.b.]

    • Verify the waypoints by comparing the master document and the LRNS;
    • Circle the waypoint, waypoint number, or symbol to signify that another crewmember independently cross-checks the entry of the coordinates in the navigation computer;
    • Tick or diagonally slash the circled waypoint, waypoint number, or symbol to signify the cross-checking of track and distance information within a specified tolerance;

    Be especially careful about waypoint shorthand used by the FMS. The ARINC-424 shorthand isn't as intuitive as many pilots believe and it is easy to create your own Gross Navigational Error that can be easily overlooked on the avionics map display. N4550, for example, is 45°30'N 050°W; while 4550N is 45°00'N 050°W, 30 miles south.

    More about this: ARINC 424 Shorthand.

    [NAT Doc 007, ¶8.2.6]

    • For aircraft equipped with FMS data bases, FMS generated or inserted waypoints should be carefully compared to Master Document waypoints and cross checked by both pilots.
    • An appropriate symbology should be adopted to indicate the status of each waypoint listed on the Master Document.

    No matter the method used to enter the flight plan, best practices dictate that the other pilot verify the waypoints in the FMS are correct. The waypoint symbology is specified in several documents but personal preferences and company policies may be preferred.

    More about this: Waypoint Notation.


    Figure: Example Plotting Chart, (Eddie's notes)

    [FAA Order 8900.1 Volume 4, Chapter 1, Paragraph 4-80.A.1.] Plotting procedures are required for all turbojet operations where the route segment between the operational service volume of ICAO standard ground-based navigational aids exceeds 725 NM.

    Plotting procedures are fairly straight forward but require a level of precision and perhaps some practice. Need a refresher?

    See: Plotting 101.

    The plotting chart is typically measured from the midpoint between waypoints. The magnetic course on the master document may or may not be a midpoint measurement. A difference of more than +/- 2° or +/- 2 nm might be acceptable but should be a cause for a recheck and verification.

    For our example route we've plotted a few points before the oceanic entry point as a reminder that things will get busy, and every point along the oceanic route up to the exit, which is at DINIM.

    Plot Relevant Tracks

    Figure: Example Plotting Chart With Track, (Eddie's notes)

    If your route or any potential diversionary routes cross any relevant track systems, the tracks should be plotted as well. Tracks should be considered relevant if the route of flight is within or over the track system and an aircraft drift down or diversion will conflict any of the tracks. This is especially true over the very crowded North Atlantic (NAT) Organized Track System (OTS).

    [ICAO NAT Doc 001, Paragraph 1.12.7] The agreed OTS is then promulgated as a NAT Track Message via the Aeronautical Fixed Telecommunications Network (AFTN), to all interested agencies. A typical time of publication for the Westbound OTS is 0000 UTC and for the Eastbound OTS is 1200 UTC. This message gives full details of organized track coordinates as well as flight levels expected to be in use on each track. All aircraft operating in or above MNPS Airspace are required to carry a copy of the current OTS Message. Its correct interpretation by Operators and pilots is essential to both economy of operation and in minimizing the possibility of a misunderstanding which could lead to the use of incorrect track coordinates.

    We've plotted all the tracks north of our route of flight, since we will have to cross these should we decide to divert to Iceland. We've also plotted one track to our south, as a reminder about how far we can maneuver if turning right off track.

    Compute and Plot Equal Time Points (ETPs)


    Figure: Master Document Example Page 5, ETP's (Eddie's Notes)

    Besides telling you they are needed, there is very little regulatory guidance on Equal Time Points (ETPs). Having an ETP plotted gives you a decision making tool if you find yourself between suitable airports with an engine failure requiring an altitude drift down, a medical emergency requiring a divert without requiring an altitude change, or a loss of cabin pressurization requiring an immediate descent. More about these:

    You can calculate your ETP's with pencil and paper, have your flight plan provider automatically compute them, or your aircraft FMS may have an appropriate function. I recommend using the flight plan provider's, at least as a start, since they would be using the same winds as used in the flight plan.

    For more about these computation methods, see: Equal Time Points (ETP's).

    Our flight plan provider includes ETP's on request, as shown in the figure.

    The ETP's are plotted with a line off to one side with arrows pointing to the ETP airports. As a technique, if the engine-out, medical, and pressurization loss ETP's are within 100 nm of each other, only the middle ETP need be plotted.

    Figure: Example Plotting Chart, (Eddie's notes)

    In our example, the 1E INOP, DEPRESS, and MEDICAL ETPs are 1510, 1541, and 1521 nautical miles from CYQX, so only the 1521 is plotted. The point is at 52° 05.8'N 37° 00.9'W. Since we know the point will be on our course line, we just need to put our tick mark along the course at 37° 00.9'W. The line is drawn away from the course for clarity and arrows are drawn in the direction of CYQX and EINN.

    If we have any reason to divert prior to this ETP, we will choose to reverse course to CYQX. Beyond that point, we press forward to EINN.

    Compute and Plot PSRs, if required


    Figure: Master Document Example Page 5, PNR, (Eddie's Notes)

    The Point of Safe Return (PSR) provides the pilot with the farthest point to which the aircraft can go and be able to return safely to the departure point with adequate holding, approach, landing, and alternate fuel. It is normally used when flying to remote island destinations with no diversion possibilities en route but can be useful even when alternates are available.

    For more about this: Point of Safe Return.

    ARINC Direct will provide a "PNR" upon request, as shown. The "Point of No Return" is the same thing as the "Point of Safe Return," with a more dramatic name.

    For our example we'll add the PSR and our pre-departure plotting chart preparations will be complete, unless we are using CPDLC / ADS-C, as follows below.

    Figure: Example Plotting Chart, (Eddie's notes)

    If any of our passengers, for some reason, decide they need to go back to our departure airport (KBED), the last moment you can do this without having to make a fuel stop is shown with the red bracket on the chart. Keep in mind that if you return at this point, you will need to fly direct to the airport, the PSR does not use normal routings that anyone less than an emergency aircraft will be offered.

    Add CPDLC Addresses, if desired


    Figure: ICAO Gold Appendix E, (ICAO Gold Manual, Appendix E)

    You can add the applicable CPDLC FIR boundaries, AFN and ATSU addresses, if you are so equipped and would like the information available on the chart.

    For more about this see: CPDLC Preflight Setup.

    For our example we'll highlight the FIR boundary between Gander and Shanwick, and enter the addresses found in the ICAO Gold Manual, Appendix E.

    Figure: Example Plotting Chart, (Eddie's notes)

    Our plotting chart is now ready for the flight.



    Figure: Master Document, Ramp, (Eddie's notes)

    UTC Time Check.

    [AC 91-70A, Appendix 2, ¶2.b.(1)] It is a requirement to have a master clock onboard synchronized to universal coordinated time (UTC) or GPS. Use this time source, which is typically the flight management system (FMS), for all ETAs and ATAs. The use of multiple time sources on the aircraft has lead to inconsistencies in reporting times to ATC and resulted in a loss of longitudinal separation.

    You can use your HF, your GPS, or an Internet source.

    More about this: UTC Time Check.

    Fuel Check.

    Record fuel onboard on the Master Document; this quantity will become the basis for subsequent fuel checks.

    Domestic Clearance

    You will typically have a domestic clearance that will include your destination but not the oceanic portion of the trip. Your clearance at this stage does not normally give you clearance into oceanic airspace.

    Our domestic clearance is: "Gulfstream seven seven zero zero is cleared to Geneva via radar vector Lobstah then as filed. After takeoff maintain runway heading and climb to two thousand feet, expect flight level four three zero ten minutes after takeoff. Contact departure control on one two four point four, squawk four three two one." We are clear to our destination but we do not have clearance into oceanic airspace.

    SELCAL Configuration


    Photo: G450 Audio Control Panel SELCAL Setting, (Eddie's aircraft)

    Some aircraft encode their SELCAL codes in software and may lose the code on occasion. In the G450, for example, the code can be entered from any cockpit audio control panel but only when on the ground. It is a good idea to make sure the code is entered and correct when you can.

    For more about this see: G450 Communications / SELCAL.



    Figure: RVSM/NAV Performance Log Example, Preflight, (Eddie's Notes)

    [AC 91-70A, ¶3-12.c.(2)] Operators should review their documentation to ensure that it provides all the information required to reconstruct the flight. These records also satisfy the ICAO standard of keeping a journal. Specific requirements could include, but do not only apply to, the following:

    • Record of the initial ramp position (latitude/longitude) in the LRNS, original planned flight track, and levels.
    • Record of the LRNS gross error check, RVSM altimeter comparisons, and heading reference cross-checks before entering oceanic airspace.

    [AC 91-70A, Appendix 2, ¶2.b.(4)] Before taxi, crews should set their altimeters to the airport QNH. Both primary altimeters must agree within + 75 feet of field elevation. The two primary altimeters must also agree within the limits noted in the aircraft operating manual.

    Groundspeed Check.

    [AC 91-70A, ¶3-6.i.] After leaving the ramp, check INS groundspeeds. Perform a check of the malfunction codes while the aircraft stops but after it has taxied at least part of the way to the takeoff position. Any significant groundspeed indication while stationary may indicate a faulty unit.

    An inertial ground speed while stationary is an indication there is significant drift in the unit. Some aircraft offer a "quick align" to reset the inertial's ground speed to zero. In older Gulfstreams, for example, switching from NAV to ALIGN to NAV in less than six seconds causing such a quick align. Other aircraft with Hybrid IRS, such as the G450, automatically perform a quick realign any time the aircraft is motionless for more than 7.5 minutes.

    More about this: G450 Systems: Avionics.

    RVSM/NAV Performance Log.

    You should have a log to record your altimeter and navigation system performance so that you remember to check all that needs to be checked, and so that you have a written record of it. A blank log is available for download: here.

    More about the requirement: Oceanic Arrival / Record Keeping.

    CPDLC Checklist


    Figure: CPDLC Checklist Example, (Eddie's Notes)

    If you are CPDLC-equipped and departing into an area with CPDLC coverage, you have several steps to accomplish while still sitting on the ramp. It may be helpful to add a printed copy of your CPDLC checklist to the RVSM/NAV Performance Log and Master Document.

    More about this: CPDLC Checklist.

    Local Procedures Review.


    Figure: Narita Airfield Diagram, (Jeppesen Airway Manual, Narita Intl, RJAA, 20-9, 22 Nov 13)

    The Jeppesen Airway Manual approach charts for the airport may have several pages of local procedures that should be reviewed prior to request for clearance or engine start. These procedures can include specific instructions that are critical to successfully operating at the airport, such as:

    • Engine start procedures
    • Clearance delivery procedures
    • Start-up, push-back and taxi procedures
    • Noise abatement procedures
    • Speed restrictions on departure and arrival
    • Runway entry and exit procedures

    If you are sitting at an unfamiliar airport, foreign or domestic, it always pays to listen to the ground control or tower frequencies for a while to get the "lay of the land" and a heads up as to your immediate future. A few things to listen for:

    • Is ground control giving ATC clearances before taxi? (That is not the normal procedure for most of the world but the list of exceptions are growing. If they are giving ATC clearance that is what you ask for, "Request ATC clearance."
    • Which departure procedures are in use? At locations where advance ATC clearance is not given, you will be listening to your ATC clearance while your are taxiing, just minutes away from takeoff. You will often have a difficult time understanding what the departure procedure is and it will be to your benefit to have an idea early on. Some airports group departures based on the runway in use, for example.
    • Taxi routings can include instructions you've never heard before. You may hear other aircraft instructed to "Holding Point Whiskey" but not see that immediately on any charts. Hearing this given to another airplane gives you some time to look it up.

    Oceanic Clearance Prior to Departure

    You normally request your oceanic clearance while airborne, see: Oceanic Clearance, but there are exceptions for some airports that are close to oceanic airspace. For example:

    • [Jeppesen Airway Manual / Air Traffic Control / State Rules and Procedures - Ireland] NAT flights departing Irish aerodromes excluding Dublin, Weston and Casement (Baldonnel) airports, planned to enter NAT airspace between GOMUP and BEDRA (inclusive) should request Oceanic Clearance from Shanwick Oceanic via ORCA Datalink prior to departure. Shannon ACC will on request obtain Oceanic Clearance from Shanwick Oceanic and pass the clearance to the flight prior to departure.

    If you are departing from an airport that is near the oceanic airspace you will be transitting, you should check the applicable Jeppesen Airway Manual page for a requirement to obtain oceanic clearance prior to departure.

    Prior to Oceanic Boundary/Oceanic Clearance

    Departure Timing.


    Figure: Shannon Airfield Diagram, (Jeppesen Airway Manual, Shannon, EINN, 10-9, 14 Oct 13)

    Time to Taxi. If assigned a wheels up time or a time crossing your first oceanic point, you may need to carefully plan when you plan leaving the chocks. You can estimate your taxi time using the airfield diagram:

    • Scale: The longitude scale should include the degree minutes in the format degree - minutes. 46-14, for example, means 46°14'. Each minute of longitude equals one nautical mile.
    • Distance to Taxi: Using that scale, you can estimate the distance from your parking stand to the runway holding point.
    • Time to Taxi: If you taxi at twenty knots, you will cover each nautical mile in 3 minutes. Remember to add a few seconds for each turn as you will probably slow a bit.

    In the example Shannon Ireland diagram shown, we build a scale using the 52-42 and 52-43 longitude marks and determine our distance from the apron to the holding point for runway 24 is 1½ nautical miles. At 20 knots that will take 3 x 1½ = 4½; let's call it 5 minutes to account for the turns. We know it takes about 5 minutes to get the engines started and to complete all before taxi checklists, so we plan to start engines 10 minutes prior to our projected wheels up time.

    Time to climb - FMS Capable. A modern FMS should give you an accurate ETA to your first oceanic waypoint if you input the estimated takeoff time.

    More about how to do this in a G450: G450 FMS: Adjust ETD.


    Photo: G450 Flight Plan 1/6 page, (Eddie's aircraft)

    If in EINN, for example, expecting the ERAB2B departure to ERABI, BEXET, DOGAL, and then oceanic routing, you can enter expected takeoff times and see the ETA for each point update. If your oceanic clearance stipulates a 0837Z time overhead DOGAL, you can subtract the FMS time at DOGAL from the planned departure time to come up with an ETE, then use that to adjust the departure time. For our G450, we see it takes 37 minutes, so we enter /0800Z at LSK 1L on the first page of the flight plan. The FMS computes we will reach DOGAL at 0837Z. Now we know we must takeoff at 0800Z to make that happen.

    Time to climb - FMS Not Capable. Some older FMS will not correctly compute ETAs during or following a climb to altitude. In the older GIIIs, for example, the FMS assumed 250 knots ground speed until level off, which was way too slow. We found adding 5 minutes to the ETA for any point between FL 300 and FL 350 plus an additional 1 minute per every additional 5,000 feet worked well. Of course that was for the GIII, you will have to experiment to find a rule for your FMS.

    Transition Altitude.


    Figure: Transition Layer Climb, (Eddie's notes)

    [ICAO Document 4444, Ch 1]

    • Transition altitude: The altitude at or below which the vertical position of an aircraft is controlled by reference to altitudes.
    • Transition Layer: The airspace between the transition altitude and the transition level.
    • Transition Level: The lowest flight level available for use above the transition altitude.

    Crews should brief the transition altitude based on information from approach plates, ATIS, or the applicable state pages. After climbing through the transition altitude, the altimeters should be reset to 29.92 inches or 1013.2 hPa.

    G450 Note: The FMS transition level function will not alert you that you have passed the transition level. Its only function is to determine when FMS altitudes are shown as "FL" on the MCDU.

    More about this: Transition Altitude/Layer/Level.

    Climb Level-off Procedure.

    [NAT Doc 007, ¶9.1.13] To prevent unwanted TCAS/ACAS warnings or alerts, when first approaching any cleared flight level in NAT RVSM airspace, pilots should ensure that the vertical closure speed is not excessive. It is considered that, with about 1500 ft to go to a cleared flight level, vertical speed should be reduced to a maximum of 1500 ft per minute and ideally, to between 1000 ft per minute and 500 ft per minute. Additionally, it is important to ensure that the aeroplane neither undershoots nor overshoots the cleared level by more than 150 ft, manually overriding if necessary.

    This seems to be necessary more in Europe than in the United States. Perhaps the skies are more crowded or there is an abundance of older TCAS software. Whatever the reason, reducing climb rates near level off appears to be necessary.

    En Route Timing.

    If en route to the waypoint with a timing restriction, you can make minor adjustments with speed, larger adjustments with routing changes. If late more than a few minutes you may need to get a reclearance.


      Figure: Timing 30 knots adjustment, (Eddie's notes)

    • Adjusting speed — If flying at typical en route speeds, it will take about 100 nm to impact your ETA by 1 minute if adjusting by 30 knots.
    • images

      Figure: Timing Standard Rate, (Eddie's notes)

    • 360° Turn — A half-standard rate turn takes 4 minutes.
    • images

      Figure: Timing Triangle, (Eddie's notes)

    • Timing Triangle — A turn 60° off course, followed t-seconds by a turn 60° back towards course, followed t-seconds later by a turn back onto course costs a total of t-seconds.

    More about these timing techniques: Block Times.

    HF Radio.

    [AC 91-70A, Appendix 2, ¶2.b.(8)] Conduct an HF check on the primary and secondary HF radios in areas where dual HF radios are required. If possible, do the HF checks on the ground or before entering oceanic airspace. You should also accomplish a Selective Call (SELCAL) check.

    [NAT Doc 007, ¶6.1.8] When using HF communications and even when using ADS-C and/or CPDLC, pilots should maintain a listening watch on the assigned frequency, unless SELCAL is fitted, in which case they should ensure the following sequence of actions:

    • provide the SELCAL code in the flight plan; (any subsequent change of aircraft for a flight will require passing the new SELCAL information to the OAC);
    • check the operation of the SELCAL equipment, at or prior to entry into Oceanic airspace, with the appropriate aeradio station. (This SELCAL check must be completed prior to commencing SELCAL watch); and
    • maintain thereafter a SELCAL watch.

    Proper HF frequency selection can be a challenge in some regions and is not always facilitated by VHF center controllers when leaving domestic airspace. In general the regional en route chart can be a good source of frequency information.

    More about this: HF.

    CPDLC or ADS.

    [ICAO Gold, ¶ 5.2.2] When CPDLC and/or ADS-C services are available for the flight, the flight crew should initiate an AFN logon in accordance with the conditions provided in [the table]:

    Condition(s) When Logon address of ATSU
    Prior to takeoff, where permitted or required No earlier than 45 minutes prior to ETD Current ATSU for the FIR that the departure airport is located within
    15 minutes or more prior to FIR boundary estimate above 10,000 feet Current ATSU for the FIR in which the airport is operating
    Less than 15 minutes prior to FIR boundary estimate above 10,000 feet Next ATSU that provides CPDLC and/or ADS-C services for the FIR on that flight

    Greater detail here: CPDLC.

    Oceanic Clearance


    Figure: Master Document, Oceanic, (Eddie's notes)

    [AC 91-70A, Appendix 2, ¶2.f.(4)] Obtain Oceanic Clearance. Both pilots must obtain oceanic clearance from the appropriate clearance delivery (OCD). (Clearance via voice should be at least 40 minutes prior to oceanic entry and via data link should be 30 to 90 minutes prior to oceanic entry). It is important that both pilots confirm and enter the ocean at the altitude assigned in the oceanic clearance (this may be different than the domestic cleared FL). An oceanic clearance typically includes a route, FL and assigned Mach. Crews should include their requested FL in their initial clearance request. Some oceanic centers require pilots to advise them at the time of their oceanic clearance When Able Higher (WAH). Crews should be confident that they are able to maintain requested FLs based on aircraft performance capabilities.

    [AC 91-70A, Appendix 2, ¶2.f.(4)] Re-Clearance. A re-clearance (that is different from the oceanic route requested with the filed flight plan) is the number one scenario which leads to a GNE. Crews must be particularly cautious when receiving a re-clearance. Both pilots should receive and confirm the new routing and conduct independent cross-checks after updating the LRNS, Master CFP, and plotting chart. It is critical that crews check the magnetic course and distance between the new waypoints as noted in PREFLIGHT under the paragraph "LRNS Programming."

    A few notes about oceanic clearances:

    • CPDLC (Everywhere except NYC) — If you are CPDLC- or ACARS-equipped in any region other than the NYC FIR you can downlink your oceanic through a datalink service provider.
    • See: CPDLC - Oceanic Clearance (DSP).

    • CPDLC (NYC FIR) — If you are CPDLC in the NYC FIR, you can downlink your oceanic clearance directly through CPDLC.
    • See: CPDLC - Oceanic Clearance (NYC).

    • Voice Procedures (Gander) — Panel 1 of the Jeppesen Atlantic Orientation Chart includes Gander OCA procedures and frequencies needed to obtain an eastbound oceanic clearance.
    • Voice Procedures (Shanwick) — Panel 11 of the Jeppesen Atlantic Orientation Chart includes Shanwick OCA procedures and frequencies needed to obtain oceanic westbound clearance.

    Figure: Oceanic Clearance Downlonk, (Eddie's notes)

    We receive our clearance via data link and notice that we have been cleared at FL390, which is a bit unusual for us. A quick glance at the flight plan reveals that we are too heavy to cross any higher but there is a plan to climb to FL410 passing 030W. Of course the flight plan accounts for this but what if, for some reason, we don't get clearance to climb? A quick look at the fuel burns tells us we are okay even if the entire crossing is made at the lower altitude, but just the same we made a note on the plotting chart to remind ourselves to climb.

    SELCAL Check.

    [AC 91-70A, Appendix 2, ¶2.f.(2)] If the crew was unable to accomplish the HF and SELCAL checks on the ground, they must accomplish these checks before oceanic entry.

    The SELCAL check is more than a test of your radio equipment, it is a test of the complete connection from your airplane to the radio station. You need to check it every time you change frequencies or FIR. If you are unable to get a good SELCAL check, you must maintain a listening watch on the frequency, even if you are CPDLC equipped.

    Coast-Out Navigation Accuracy Check.


    Figure: G450 PPOS Direct FMS Page, (Eddie's aircraft)

    [AC 91-70A, Appendix 2, ¶2.f.(1)] Gross Error Accuracy Check. Before oceanic entry, check the accuracy of the LRNS against a ground-based NAVAID. Record the results of the accuracy check with the time and position. A large difference between the ground-based NAVAID and the LRNS may require immediate corrective action. Operators should establish a gross error check tolerance based on the type of LRNS. It is not advisable for crews to attempt to correct an error by doing an air alignment or by manually updating the LRNS since this has often contributed to a gross navigation error (GNE).

    Before you stray out of ground-based NAVAID range — sooner actually, before you leave the service volume of an appropriate NAVAID — you need to compare what it is telling you versus what your FMS is telling you. The procedure can be checking a VOR Radial/DME plot versus your FMS latitude/longitude on your plotting chart, or using an FMS "Cross Points" function versus the VOR Radial/DME.

    More about this: Navigation Accuracy Check.

    Prior to Oceanic Boundary Altimeter Check.


    Figure: RVSM/NAV Performance Log Example, Coast Out, (Eddie's Notes)

    [AC 91-70A, Appendix 2, ¶2.f.(6)] Altimeter Checks. Crews are required to check the two primary altimeters which must be within 200 feet of each other. Conduct this check while at level flight. You should also note the stand-by altimeter. Record the altimeter readings with the time.

    If your altimeters fail this check you may or may not be able to continue the flight, depending which part of the world you are about to transit.

    More about this: International Abnormal Procedures / Loss of RVSM Capability in Oceanic Airspace.

    In our example flight from KBED to LSGG we have complete all the necessary tasks to enter oceanic airspace and our plotting chart reflects that:

    Figure: Example Plotting Chart (Just Entering Oceanic), (Eddie's notes)

    Book Notes

    Portions of this page can be found in the book International Flight Operations, Part VII, Chapter 2.


    Advisory Circular 91-70A, Oceanic and International Operations, 8/12/10, U.S. Department of Transportation

    ICAO Doc 4444 - Air Traffic Management, Fourteenth Edition, Procedures for Air Navigation Services, International Civil Aviation Organization, 2001 *

    ICAO Doc 4444 - Air Traffic Management, Fifteenth Edition, Procedures for Air Navigation Services, International Civil Aviation Organization, 2007 *

    * Not all of Doc 4444 seems to have been reproduced in the 15th edition, so you might need to look at the 15th edition and then then 14th edition for some sections.

    ICAO Doc 4444 - Amendment No. 1, Procedures for Air Navigation Services, International Civil Aviation Organization, Amendment No. 1, 2007

    ICAO Doc 4444 - Amendment No. 2, Procedures for Air Navigation Services, International Civil Aviation Organization, Amendment No. 2, 19/11/09

    ICAO Global Operational Data Link Document (GOLD), International Civil Aviation Organization, Second Edition, 26 April 2013

    Jeppesen Airway Manual

    NAT Doc 001, Guidance and Information Material Concerning Air Navigation in the North Atlantic Region, Seventh Edition, January 2002.

    NAT Doc 007, North Atlantic Operations and Airspace Manual Doc 007, Edition 2013

    Revision: 20140203